Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+.

نویسندگان

  • G Hajnóczky
  • R Hager
  • A P Thomas
چکیده

The concerted action of inositol 1,4,5-trisphosphate (IP3) and Ca2+ on the IP3 receptor Ca2+ release channel (IP3R) is a fundamental step in the generation of cytosolic Ca2+ oscillations and waves, which underlie Ca2+ signaling in many cells. Mitochondria appear in close association with regions of endoplasmic reticulum (ER) enriched in IP3R and are particularly responsive to IP3-induced increases of cytosolic Ca2+ ([Ca2+]c). To determine whether feedback regulation of the IP3R by released Ca2+ is modulated by mitochondrial Ca2+ uptake, the interactions between ER and mitochondrial Ca2+ pools were examined by fluorescence imaging of compartmentalized Ca2+ indicators in permeabilized hepatocytes. IP3 decreased luminal ER Ca2+ ([Ca2+]ER), and this was paralleled by an increase in mitochondrial matrix Ca2+ ([Ca2+]m) and activation of Ca2+-sensitive mitochondrial metabolism. Remarkably, the decrease in [Ca2+]ER evoked by submaximal IP3 was enhanced when mitochondrial Ca2+ uptake was blocked with ruthenium red or uncoupler. Moreover, subcellular regions that were relatively deficient in mitochondria demonstrated greater sensitivity to IP3 than regions of the cell with a high density of mitochondria. These data demonstrate that Ca2+ uptake by the mitochondria suppresses the local positive feedback effects of Ca2+ on the IP3R, giving rise to subcellular heterogeneity in IP3 sensitivity and IP3R excitability. Thus, mitochondria can play an important role in setting the threshold for activation and establishing the subcellular pattern of IP3-dependent [Ca2+]c signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells.

Activation of muscarinic receptors in rat parotid cells results in breakdown of polyphosphoinositides liberating inositol phosphates, including inositol trisphosphate. Formation of inositol trisphosphate appears independent of agonist-induced Ca2+ mobilization, since neither formation nor degradation of inositol trisphosphate are appreciably altered in low-calcium media, and elevation of cytoso...

متن کامل

Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors.

The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed i...

متن کامل

Control of protein translation by IP3R-mediated Ca2+ release in Drosophila neuroendocrine cells

The inositol 1,4,5-trisphosphate receptor (IP3R) is one of two Ca2+ channels that gates Ca2+ release from ER-stores. The ligand IP3, generated upon specific G-protein coupled receptor activation, binds to IP3R to release Ca2+ into the cytosol. IP3R also mediates ER-store Ca2+ release into the mitochondria, under basal as well as stimulatory conditions; an activity that influences cellular bioen...

متن کامل

Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria.

Transmission of cytosolic [Ca2+] ([Ca2+]c) oscillations into the mitochondrial matrix is thought to be supported by local calcium control between IP3 receptor Ca2+ channels (IP3R) and mitochondria, but study of the coupling mechanisms has been difficult. We established a permeabilized cell model in which the Ca2+ coupling between endoplasmic reticulum (ER) and mitochondria is retained, and mito...

متن کامل

Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores

Antibodies against the T3-antigen receptor complex can activate the human T cell line, Jurkat, to produce interleukin 2 (2-5). This activation is initiated by a receptor-mediated increase in the concentration of free cytoplasmic calcium ions [Ca2+]i (3, 4). In this communication, we investigate the mechanism by which the receptor complex increases [Ca2+ )i in Jurkat cells. The initial receptor-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 20  شماره 

صفحات  -

تاریخ انتشار 1999